Special Class of Homo-Cordial Graphs

Dr. A. Nellai Murugan
Department of Mathematics, V.O.Chidambaram College, Tuticorin, Tamilnadu, India.
A. Mathubala
Department of Mathematics, V.O.Chidambaram College, Tuticorin, Tamilnadu, India.

Abstract

Let $G=(V, E)$ be a graph with p vertices and q edges. A Homo-Cordial Labeling of a Graph G with vertex set V is a bijection from V to $\{0,1\}$ such that each edge $u v$ is assigned the label 1if $f(u)=f(v)$ or 0 if $f(u) \neq f(v)$ with the condition that the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1 and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1 . The graph that admits a Homo-Cordial Labeling (HoCL) is called Homo-Cordial Graph (HoCG). In this paper, we proved that the graphs $\mathbf{Z}-\left(\mathbf{P}_{\mathrm{n}}\right)$, Twig $\mathbf{T g}_{\mathrm{n}},\left(\mathbf{P}_{\mathbf{2}} \cup \mathrm{mK}_{1}\right)+\mathrm{N}_{2}$, Jelly Fish $\mathbf{J}(\mathrm{m}, \mathrm{n})$ are Homo-Cordial Graphs.

Index Terms - Twig, Jelly Fish, Homo-Cordial Graph, HomoCordial Labeling, 2000 Mathematics Subject classification 05C78.

1. INTRODUCTION

A graph G is a finite nonempty set of objects called vertices together with a set of unordered pairs of distinct vertices of G which is called edges. Each pair $\mathrm{e}=\{\mathrm{uv}\}$ of vertices in E is called edges or a line of G. In this paper, we proved that the graphs Z-(P_{n}), Twig $\mathrm{Tg}_{\mathrm{n}},\left(\mathrm{P}_{2} \cup \mathrm{mK}_{1}\right)+\mathrm{N}_{2}$, Jelly Fish $\mathrm{J}(\mathrm{m}, \mathrm{n})$ are Homo-Cordial Graphs. For graph theory terminology, we follow [2]

2. PRELIMINARIES

Let $G=(V, E)$ be a graph with p vertices and q edges. A HomoCordial Labeling of a Graph G with vertex set V is a bijection from V to $\{0,1\}$ such that each edge $u v$ is assigned the label 1if $\mathrm{f}(\mathrm{u})=\mathrm{f}(\mathrm{v})$ or 0 if $\mathrm{f}(\mathrm{u}) \neq \mathrm{f}(\mathrm{v})$ with the condition that the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1 and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1 .

The graph that admits a Homo-Cordial Labeling (HoCL) is called Homo-Cordial Graph (HoCG). In this paper, we proved that the graphs $\mathrm{Z}-\left(\mathrm{P}_{\mathrm{n}}\right)$, Twig Tg_{n}, $\left(\mathrm{P}_{2} \mathrm{U} \mathrm{mK}_{1}\right)+\mathrm{N}_{2}$, Jelly Fish $\mathrm{J}(\mathrm{m}, \mathrm{n})$ are Homo-Cordial Graphs.

Definition: 2.1
In a pair of path $P_{n}, i^{\text {th }}$ vertex of a path P_{n} is joined with $i+1^{\text {th }}$ vertex of a path P_{n}. It is denoted by $Z-\left(P_{n}\right)$.

Definition: 2.2
A graph obtained from a path by attaching exactly two pendant edges to each internal vertex of the path is called a twig and is denoted by $\mathrm{Tg}_{\mathrm{n}}, \mathrm{n} \geq 1$

Definition: 2.3
The graph $\left(\mathrm{P}_{2} \cup m \mathrm{~K}_{1}\right)+\mathrm{N}_{2}$ is a graph with vertex set $\left\{\mathrm{z}_{1}, \mathrm{Z}_{2}, \mathrm{X}_{1}, \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{m}}\right\} \cup\left\{\mathrm{y}_{1}, \mathrm{y}_{2}\right\}$ and edge
set $\left\{\left[\left(y_{1} z_{1}\right),\left(y_{1} z_{2}\right),\left(y_{2} z_{1}\right),\left(y_{2} z_{2}\right),\left(z_{1} z_{2}\right)\right] \cup\left[\left(y_{1} x_{i}\right) \cup\left(y_{2} x_{i}\right):\right.\right.$ $1 \leq \mathrm{i} \leq \mathrm{m}]\}$.
Definition: 2.4
For integers $m, n \geq 0$, we consider the graph Jelly Fish $J(m, n)$ with vertex set $\left.\mathrm{V}(\mathrm{J}(\mathrm{m}, \mathrm{n}))=[\mathrm{u}, \mathrm{v}, \mathrm{x}, \mathrm{y}],\left[\mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{m}\right],\left[\mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right]\right\}$ and the edge set $\mathrm{E}(\mathrm{J}(\mathrm{m}, \mathrm{n}))=\{[(\mathrm{ux}) \mathrm{U}(\mathrm{uy}) \mathrm{U}(\mathrm{vx}) \mathrm{U}(\mathrm{vy}) \mathrm{U}(\mathrm{xy})]$
$\left.\mathrm{U}\left[\left(\mathrm{uu}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{m}\right] \cup\left[\left(\mathrm{vv}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{n}\right]\right\}$.

3. MAIN RESULTS

Theorem:3.1
Z - P_{n} is Homo-Cordial Graph.
Proof:
Let $\quad \mathrm{V}\left(\mathrm{Z}-\mathrm{P}_{\mathrm{n}}\right)=\left\{\left[\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right]\right\}$ and
$E\left(Z-P_{n}\right)=\left\{\left[\left(u_{i} u_{i+1}\right): 1 \leq i \leq n-1\right] \cup\left[\left(v_{i} v_{i+1}\right):\right.\right.$
$\left.1 \leq \mathrm{i} \leq \mathrm{n}-1] \cup\left[\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right): 1 \leq \mathrm{i} \leq \mathrm{n}-1\right]\right\}$.
Define $f: \mathrm{V}\left(\mathrm{Z}-\mathrm{P}_{\mathrm{n}}\right) \rightarrow\{0,1\}$.
The vertex labeling are,

$$
\begin{aligned}
& f\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{lll}
0 & \mathrm{i} \equiv 0,3 \bmod 4 \\
1 & \mathrm{i} \equiv 1,2 \bmod 4
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right. \\
& f\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{lll}
0 & \mathrm{i} \equiv 1,2 \bmod 4 \\
1 & \mathrm{i} \equiv 0,3 \bmod 4
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right.
\end{aligned}
$$

The induced edge labeling are,

$$
\begin{aligned}
& f^{*}\left[\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)\right]=\left\{\begin{array}{lll}
0 & \mathrm{i} \equiv 0 \bmod 2 \\
1 & \mathrm{i} \equiv 1 \bmod 2 & 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
f^{*}\left[\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)\right] & =\left\{\begin{array}{lll}
0 & \mathrm{i} \equiv 0 \bmod 2 \\
1 & \mathrm{i} \equiv 1 \bmod 2
\end{array}\right. & 1 \leq \mathrm{i} \leq \mathrm{n}-1
\end{array}\right.
\end{aligned}
$$

$f *\left[\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)\right]=\left\{\begin{array}{ll}0 & \mathrm{i} \equiv 1 \bmod 2 \\ 1 & \mathrm{i} \equiv 0 \bmod 2\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}-1\right.$
Here, $\mathrm{v}_{f}(1)=\mathrm{v}_{f}(0) \quad$ for all n ,
$\mathrm{e}_{f}(1)=\mathrm{e}_{f}(0) \quad$ for $\mathrm{n} \equiv 1 \bmod 2$
and
$\mathrm{e}_{f}(1)=\mathrm{e}_{f}(0)+1 \quad$ for $\mathrm{n} \equiv 0 \bmod 2$.
Therefore, $Z-P_{n}$ satisfies the conditions $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.

Hence, Z - P_{n} is Homo-Cordial Graph.
For example, the Homo-Cordial Labeling of $\mathrm{Z}-\mathrm{P}_{5}$ and $\mathrm{Z}-\mathrm{P}_{6}$ are shown figure 3.2 and figure 3.3 respectively.

Figure 3.2:

Theorem:3.4
Twig Tg_{n} is Homo-Cordial Graph.
Proof:
Let $\quad \mathrm{V}\left(\operatorname{Tg}_{\mathrm{n}}\right)=\left\{\left[\mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right],\left[\mathrm{v}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}-2\right]\right\}$ and $\mathrm{E}\left(\mathrm{Tg}_{\mathrm{n}}\right)$ $=\left\{\left[\left(u_{i} u_{i+1}\right): 1 \leq i \leq n-1\right] \cup\left[\left(u_{i+1} w_{i}\right) \cup\left(u_{i+1} v_{i}\right): 1 \leq i \leq n-2\right]\right\}$

Define $f: \mathrm{V}\left(\mathrm{Tg}_{\mathrm{n}}\right) \rightarrow\{0,1\}$.
The vertex labeling are,
$f\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{ll}0 & \mathrm{i} \equiv 0,1 \bmod 4 \\ 1 & \mathrm{i} \equiv 2,3 \bmod 4\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right.$
$f\left(\mathrm{v}_{\mathrm{i}}\right) \quad=\quad\left\{\begin{array}{ll}0 & \mathrm{i} \equiv 0 \bmod 2 \\ 1 & \mathrm{i} \equiv 1 \bmod 2\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}-2\right.$
$f\left(\mathrm{w}_{\mathrm{i}}\right)=\left\{\begin{array}{ll}0 & \mathrm{i} \equiv 1 \bmod 2 \\ 1 & \mathrm{i} \equiv 0 \bmod 2\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}-2\right.$

The induced edge labeling are,
$f *\left[\left(u_{i} u_{i+1}\right)\right]=\left\{\begin{array}{ll}0 & i \equiv 1 \bmod 2 \\ 1 & i \equiv 0 \bmod 2\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}-1\right.$
$f^{*}\left[\left(\mathrm{u}_{\mathrm{i}+1} \mathrm{v}_{\mathrm{i}}\right)\right]=\left\{\begin{array}{ll}0 & \mathrm{i} \equiv 2,3 \bmod 4 \\ 1 & \mathrm{i} \equiv 0,1 \bmod 4\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}-2\right.$
$f *\left[\left(u_{i+1} W_{i}\right)\right]=\left\{\begin{array}{ll}0 & i \equiv 0,1 \bmod 4 \\ 1 & i \equiv 2,3 \bmod 4\end{array} \quad 1 \leq i \leq n-2\right.$
Here, Twig $\operatorname{Tg}_{\mathrm{n}}$ satisfies the conditions $\left|\mathrm{v}_{f}(0)-\mathrm{v}_{f}(1)\right| \leq 1$ and $\left.\mid \mathrm{e}_{f} 0\right)-\mathrm{e}_{f}(1) \mid \leq 1$.

Therefore, Twig Tg_{n} is Homo-Cordial Graph.
For example, the Homo-Cordial Labeling of Tg_{5} and Tg_{6} are shown in figure 3.5 and figure 3.6 respectively.

Figure 3.5:

Figure 3.6:

Theorem:3.7

$\left(\mathrm{P}_{2} \cup \mathrm{nK}_{1}\right)+\mathrm{N}_{2}$ is Homo-Cordial Graph.

Proof:

Let G be $\left(\mathrm{P}_{2} \cup \mathrm{nK}_{1}\right)+\mathrm{N}_{2}$.
Let $\quad \mathrm{V}(\mathrm{G})=\left\{\left[\mathrm{x}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right],\left[\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{z}_{1}, \mathrm{z}_{2}\right]\right\}$ and

$$
\mathrm{E}(\mathrm{G})=\left\{\left[\left(\mathrm{y}_{1} \mathrm{z}_{1}\right),\left(\mathrm{y}_{1} \mathrm{z}_{2}\right),\left(\mathrm{y}_{2} \mathrm{z}_{1}\right), \quad\left(\mathrm{y}_{2} \mathrm{z}_{2}\right),\right.\right.
$$

$\left.\left.\left(\mathrm{z}_{1} \mathrm{z}_{2}\right)\right] \cup\left[\left(\mathrm{y}_{1} \mathrm{x}_{\mathrm{i}}\right) \cup\left(\mathrm{y}_{2} \mathrm{x}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{n}\right]\right\}$.
Define $f: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$.
The vertex labeling are ,

$$
\begin{aligned}
& f\left(\mathrm{z}_{1}\right)=0 \\
& f\left(\mathrm{z}_{2}\right)=1
\end{aligned}
$$

$$
\begin{aligned}
& f\left(\mathrm{y}_{1}\right)=0 \\
& f\left(\mathrm{y}_{2}\right)=1 \\
& f\left(\mathrm{x}_{\mathrm{i}}\right)=\left\{\begin{array}{ll}
0 & \mathrm{i} \equiv 1 \bmod 2 \\
1 & \mathrm{i} \equiv 0 \bmod 2
\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right.
\end{aligned}
$$

The induced edge labeling are,

$f^{*}\left[\left(\mathrm{y}_{1}, \mathrm{z}_{1}\right)\right]$	$=$	1
$f^{*}\left[\left(\mathrm{y}_{1}, \mathrm{z}_{2}\right)\right]$	$=$	0
$f^{*}\left[\left(\mathrm{y}_{2}, \mathrm{z}_{1}\right)\right]$	$=$	0
$f^{*}\left[\left(\mathrm{y}_{2}, \mathrm{z}_{2}\right)\right]$	$=$	1
$f^{*}\left[\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)\right]$	$=$	0
$f^{*}\left[\left(\mathrm{y}_{1} \mathrm{x}_{\mathrm{i}}\right)\right]$	$=$	$\begin{cases}0 & \mathrm{i} \equiv 0 \bmod 2 \\ 1 & \mathrm{i} \equiv 1 \bmod 2\end{cases}$
$f^{*}\left[\left(\mathrm{y}_{2} \mathrm{x}_{\mathrm{i}}\right)\right]$	$1 \leq \mathrm{i} \leq \mathrm{n}$	
$\left\{\begin{array}{lll}0 & \mathrm{i} \equiv 1 \bmod 2 \\ 1 & \mathrm{i} \equiv 0 \bmod 2\end{array}\right.$	$1 \leq \mathrm{i} \leq \mathrm{n}$	

Here, $\mathrm{v}_{f}(0)=\mathrm{v}_{f}(1)+1 \quad$ for $\mathrm{n} \equiv 1 \bmod 2$,
$\mathrm{v}_{f}(0)=\mathrm{v}_{f}(1)$ for $\mathrm{n} \equiv 0 \bmod 2$ and
$\mathrm{e}_{f}(0)=\mathrm{e}_{f}(1)+1$ for all n .
Therefore, the graph G satisfies the conditions $\mid \mathrm{v}_{f}(0)$ $\mathrm{v}_{f}(1) \mid \leq 1$ and $\left|\mathrm{e}_{f}(0)-\mathrm{e}_{f}(1)\right| \leq 1$.

Hence, $\left(\mathrm{P}_{2} \cup \mathrm{nK}_{1}\right)+\mathrm{N}_{2}$ is Homo-Cordial Graph.
For example, the Homo-Cordial Labeling of ($\mathrm{P}_{2} \mathrm{U}$ $\left.3 \mathrm{~K}_{1}\right)+\mathrm{N}_{2}$ and $\left(\mathrm{P}_{2} \cup 4 \mathrm{~K}_{1}\right)+\mathrm{N}_{2}$ are shown in figure 3.8 and figure 3.9 respectively.

Figure 3.8: $\left(\mathrm{P}_{2} \cup 3 \mathrm{~K}_{1}\right)+\mathrm{N}_{2}$

Figure 3.9: $\left(\mathrm{P}_{2} \cup \mathrm{~K}_{1}\right)+\mathrm{N}_{2}$
Theorem: 3.10
Jelly Fish $\mathbf{J}_{\mathrm{m}, \mathrm{n}}$ is Homo-Cordial Graph.
Proof:
Let $\quad \mathrm{V}\left(\mathrm{J}_{\mathrm{m}, \mathrm{n}}\right)=\left\{[\mathrm{u}, \mathrm{v}, \mathrm{x}, \mathrm{y}],\left[\mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{m}\right],\left[\mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right]\right\}$ and $\mathrm{E}\left(\mathrm{J}_{\mathrm{m}, \mathrm{n}}\right) \quad=\quad\{[(\mathrm{ux}) \mathrm{U}(\mathrm{uy}) \mathrm{U}(\mathrm{vx}) \mathrm{U}(\mathrm{vy}) \mathrm{U}(\mathrm{xy})]$ $\left.\mathrm{U}\left[\left(\mathrm{uu}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{m}\right] \cup\left[\left(\mathrm{vv}_{\mathrm{i}}\right): 1 \leq \mathrm{i} \leq \mathrm{n}\right]\right\}$.

Define $f: \mathrm{V}\left(\mathrm{J}_{\mathrm{m}, \mathrm{n}}\right) \rightarrow\{0,1\}$.
The vertex labeling are ,
$\begin{array}{lll}f(\mathrm{u}) & = & 1 \\ f(\mathrm{v}) & = & 0\end{array}$
$f(\mathrm{v})=0$
$f(\mathrm{x})=0$
$f(\mathrm{y}) \quad=\quad 1$
$f\left(\mathrm{u}_{\mathrm{i}}\right)$
$=\left\{\begin{array}{ll}0 & i \equiv 0 \bmod 2 \\ 1 & i \equiv 1 \bmod 2\end{array} \quad 1 \leq i \leq m\right.$
$f\left(\mathrm{v}_{\mathrm{i}}\right) \quad=\left\{\begin{array}{ll}0 & \mathrm{i} \equiv 1 \bmod 2 \\ 1 & \mathrm{i} \equiv 0 \bmod 2\end{array} \quad 1 \leq \mathrm{i} \leq \mathrm{n}\right.$
The induced edge labeling are,
$\left.\begin{array}{ll}f^{*}[(\mathrm{ux})]= & 0 \\ f^{*}[(\mathrm{vy})]= & 0\end{array}\right] \begin{array}{ll}f^{*}[(\mathrm{xy})]= & 0 \\ f^{*}[(\mathrm{uy})]= & 1 \\ f^{*}[(\mathrm{vx})]= & 1 \\ f^{*}\left[\left(\mathrm{uu}_{\mathrm{i}}\right)\right]=\left\{\begin{array}{lll}0 & \mathrm{i} \equiv 0 \bmod 2 \\ 1 & \mathrm{i} \equiv 1 \bmod 2 & 1 \leq \mathrm{i} \leq \mathrm{m}\end{array}\right. \\ f^{*}\left[\left(\mathrm{vv}_{\mathrm{i}}\right)\right]=\left\{\begin{array}{lll}0 & \mathrm{i} \equiv 0 \bmod 2 & 1 \leq \mathrm{i} \leq \mathrm{n} \\ 1 & \mathrm{i} \equiv 1 \bmod 2 & \end{array}\right.\end{array}$

International Journal of Emerging Technologies in Engineering Research (IJETER)

Case 1: m-even and n-even
Here, $\quad v_{f}(0)=v_{f}(1) \operatorname{ande}_{f}(0)=e_{f}(1)+1$.
Case 2: m-odd and n-odd
Here, $\quad \mathrm{v}_{f}(0)=\mathrm{v}_{f}(1)$ and $\mathrm{e}_{f}(1)=\mathrm{e}_{f}(0)+1$.
Case 3: m-even and n-odd
Here, $\quad \mathrm{v}_{f}(0)=\mathrm{v}_{f}(1)+1$ and $\mathrm{e}_{f}(0)=\mathrm{e}_{f}(1)$.
Case 4: m-odd and n-even
Here, $\quad v_{f}(1)=v_{f}(0)+1$ and $e_{f}(0)=e_{f}(1)$.
Therefore, Jelly Fish $\mathrm{J}_{\mathrm{m}, \mathrm{n}}$ satisfies the conditions $\left|\mathrm{v}_{f}(0)-\mathrm{v}_{f}(1)\right| \leq 1$ and $\left|\mathrm{e}_{f}(0)-\mathrm{e}_{f}(1)\right| \leq 1$.

Hence, Jelly Fish $\mathrm{J}_{\mathrm{m}, \mathrm{n}}$ is Homo-Cordial Graph.
For example, the Homo-Cordial Labeling of $\mathbf{J}_{2,4}, \mathbf{J}_{3,5}$, $\mathbf{J}_{2,5}$ and $\mathbf{J}_{3,4}$ are shown in figure 3.11,

Figure 3.12, figure 3.13 and figure 3.14 respectively.

Figure 3.11: $\mathrm{J}_{2,4}$

Figure 3.12: $\boldsymbol{J}_{3,5}$

Figure 3.12: $\mathrm{J}_{3,5}$

Figure 3.14: $\mathrm{J}_{3.4}$

4. CONCLUSION

Homo-Cordial is derived from the concept of Discrete Mathematics, which has wide applications in the field of Digital Technology. It is identified, in this paper, some graphs are satisfying Homo-cordial Labeling. In turn Graph theory has its own applications in Modern Technology. Hence, HomoCordial may have a range applications in the Digital World.

REFERENCES

[1] Gallian. J.A,A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinotorics 6(2001)\#DS6.
[2] Harary,F.(1969), Graph Theory, Addision - Wesley Publishing Company Inc, USA.
[3] A.NellaiMurugan (September 2011), Studies in Graph theory- Some Labeling Problems in Graphs and Related topics, Ph.D Thesis.
[4] A.Nellai Murugan and V.Baby Suganya, Cordial labeling of path related splitted graphs, Indian Journal of Applied Research ISSN 2249 555X,Vol.4, Issue 3, Mar. 2014, ISSN 2249 - 555X , PP 1-8. I .F . 2.1652
[5] A.Nellai Murugan and M. Taj Nisha, A study on divisor cordial labelling of star attached paths and cycles, Indian Journal of Research ISSN 2250 -1991,Vol.3, Issue 3, Mar. 2014, PP 12-17. I .F . 1.6714.
[6] A.Nellai Murugan and V.Brinda Devi, A study on path related divisor cordial graphs International Journal of Scientific Research, ISSN 22778179, Vol.3, Issue 4, April. 2014, PP 286 - 291. I .F . 1.8651.
[7] A.Nellai Murugan and A Meenakshi Sundari, On Cordial Graphs International Journal of Scientific Research, ISSN 2277-8179,Vol.3, Issue 7 ,July. 2014, PP 54-55. I .F . 1.8651
[8] A.Nellai Murugan and A Meenakshi Sundari, Results on Cycle related product cordial graphs, International Journal of Innovative Science, Engineering \& Technology, ISSN 2348-7968,Vol.I, Issue 5 ,July. 2014, PP 462-467.IF 0.611
[9] A.Nellai Murugan and P.Iyadurai Selvaraj, Cycle and Armed Cup cordial graphs, International Journal of Innovative Science, Engineering \& Technology, ISSN 2348-7968,Vol.I, Issue 5 ,July. 2014,PP 478-485. IF 0.611
[10] A.Nellai Murugan and G.Esther, Some Results on Mean Cordial Labelling , International Journal of Mathematics Trends and Technology ,ISSN 2231-5373,Volume 11, Number 2,July 2014,PP 97101.
[11] A.Nellai Murugan and A Meenakshi Sundari, Path related product cordial graphs, International Journal of Innovation in Science and Mathematics , ISSN 2347-9051,Vol 2., Issue 4 ,July 2014, PP 381-383
[12] A.Nellai Murugan and P. Iyadurai Selvaraj, Path Related Cup Cordial graphs, Indian Journal of Applied Research, ISSN 2249 -555X,Vol.4, Issue 8, August. 2014, PP 433-436.
[13] A.Nellai Murugan, G.Devakiriba and S.Navaneethakrishnan, Star Attached Divisor cordial graphs, International Journal of Innovative

Science, Engineering \& Technology, ISSN 2348-7968, Vol.I, Issue 6 ,August. 2014, PP 165-171.
[14] A.Nellai Murugan and G. Devakiriba, Cycle Related Divisor Cordial Graphs, International Journal of Mathematics Trends and Technology, ISSN 2231-5373, Volume 12, Number 1,August 2014,PP 34-43.
[15] A.Nellai Murugan and V.Baby Suganya, A study on cordial labeling of Splitting Graphs of star Attached C_{3} and $(2 \mathrm{k}+1) \mathrm{C}_{3}$ ISSN 2321 8835, Outreach, A Multi Disciplinary Refreed Journal, Volume . VII, 2014, 142 -147. I.F 6.531
[16] A.Nellai Murugan and V.Brinda Devi, A study on Star Related Divisor cordial Graphs ,ISSN 2321 8835, Outreach , A Multi Disciplinary Refreed Journal, Volume . VII, 2014, 169-172. I.F 6.531
[17] A.Nellai Murugan and M. Taj Nisha, A study on Divisor Cordial Labeling Star Attached Path Related Graphs, ISSN 2321 8835, Outreach, A Multi Disciplinary Refreed Journal, Volume . VII, 2014, 173-178. I.F 6.531 .
[18] .A .Nellai Murugan and V .Sripratha, Mean Square Cordial Labelling, International Journal of Innovative Research \& Studies, ISSN 23199725 ,Volume 3, Issue 10Number 2 ,October 2014, PP 262-277.
[19] A.Nellai Murugan and G. Esther, Path Related Mean Cordial Graphs , Journal of Global Research in Mathematical Archive, ISSN 2320 5822, Volume 02, Number 3,March 2014,PP 74-86.
[20] A. Nellai Murugan and A. Meenakshi Sundari, Some Special Product Cordial Graphs, Proceeding of the UGC Sponsored National Conference on Advances in Fuzzy Algebra, Fuzzy Topology and Fuzzay Graphs, Journal ENRICH , ISSN 2319-6394, January 2015, PP 129-141.
[21] L. Pandiselvi ,S.Navaneethakrishan and A. Nellai Murugan ,Fibonacci divisor Cordial Cycle Related Graphs, Proceeding of the UGC Sponsored National Conference on Advances in Fuzzy Algebra, Fuzzy Topology and Fuzzay Graphs, Journal ENRICH , ISSN 2319-6394, January 2015, PP 142-150.

Authors

Dr. A. Nellai Murugan, Associate Professor, S.S.Pillai Centre for Research in Mathematics, Department of Mathematics, V.O.Chidambaram College, Thoothukudi. College is affiliated to Manonmanium sundaranar University, Tirunelveli12, TamilNadu. He has thirty two years of Post Graduate teaching experience in which twelve years of Research experience. He is guiding six Ph. D Scholars. He has published more than seventy research papers in reputed national and international journals.

A. Madu Bala She is a full time M.Sc Student, Department of Mathematics, V.O. Chidambaram College, Tuticorin. Her Project in the II Year is labeling in Graph. She published two Research Article and Two more in communication.

